Aqueous Secondary Organic Aerosol Formation in Ambient Cloud Water Photo-Oxidations

نویسندگان

  • Misha I. Schurman
  • Alexandra Boris
  • Yury Desyaterik
  • Jeffrey L. Collett
چکیده

The current understanding of aqueous secondary organic aerosol (aqSOA) formation is based largely on laboratory investigations of very simple surrogate cloud water solutions that aid mechanistic understanding of aqueous oxidation but may not accurately reflect the influence of the complex ambient matrix present in authentic cloud waters on organic chemistry. In this study, unaltered ambient cloud water and ‘biogenically influenced’ ambient cloud water (with added pinonic acid) were photo-oxidized, atomized, and dried to simulate the formation of aqSOA in clouds, then analyzed using an Aerodyne Aerosol Mass Spectrometer. Two major chemical regimes were identified: in the first, particle organic mass is gained, then lost; sustained increases in highly oxidized fragments indicate overall organic acid formation, while increases in nominally volatile fragments suggest that evaporation may contribute to the observed mass decrease. In the second regime, the oxidation level of cloud water organic matter decreases as mass decreases, suggesting that oxidized functional groups are fragmented and lost to evaporation. Overall, the rate of aqSOA production in unaltered cloud water decreases as oxygenation increases, until organic mass loss beginning at consistent values of f44 > 0.23 ± 0.05 and O:C > 0.61 ± 0.05. We hypothesize that there may be a parameterizable ‘maximum oxidation level’ for cloud water above which functional group fragmentation is dominant. These experiments are among the first to quantify organic mass production in ambient cloud water and employ the most atmospherically relevant oxidant concentrations to date.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-cloud oxalate formation in the global troposphere: a 3-D modeling study

Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus o...

متن کامل

Cloud Processing of Gases and Aerosols in Air Quality Modeling

The representations of cloud processing of gases and aerosols in some of the current state-of-the-art regional air quality models in North America and Europe are reviewed. Key processes reviewed include aerosol activation (or nucleation scavenging of aerosols), aqueous-phase chemistry, and wet deposition/removal of atmospheric tracers. It was found that models vary considerably in the parameter...

متن کامل

Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds

[1] Aqueous-phase oxidation (in clouds and aerosols) is a potentially important source of organic aerosol and could explain the atmospheric presence of oxalic acid. Methylglyoxal, a water-soluble product of isoprene, oxidizes further in the aqueous phase to pyruvic acid. Discrepancies in the literature regarding the aqueous-phase oxidation of pyruvic acid create large uncertainties in the inclo...

متن کامل

Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing

The water-soluble fractions of aerosol filter samples and cloud water collected during the Whistler Aerosol and Cloud Study (WACS 2010) were analyzed using an Aerodyne aerosol mass spectrometer (AMS). This is the first study to report AMS organic spectra of re-aerosolized cloud water, and to make direct comparison between the AMS spectra of cloud water and aerosol samples collected at the same ...

متن کامل

Thèse de doctorat de l'Université Paris-Est

Organic aerosol formation in the atmosphere is investigated via the developpement of a new model named H2O (Hydrohilic/Hydrophobic Organics). First, a parameterization is developped to take into account secondary organic aerosol formation from isoprene oxidation. It takes into account the e ect of nitrogen oxides on organic aerosol formation and the hydrophilic properties of the aerosols. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017